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Abstract Geometrical multiscale modeling is a strategy advocated in computational hemodynamics for
representing in a single numerical model dynamics that involve different space scales. This approach is partic-
ularly useful to describe complex networks such as the circle of Willis in the cerebral vasculature. A multiscale
model of the cerebral circulation is presented where a one-dimensional (1D) description of the circle of Willis, rely-
ing on the one-dimensional Euler equations, is coupled to a fully three-dimensional model of a carotid artery, based
on the solution of the incompressible Navier–Stokes equations. Even if vascular compliance is often not relevant to
the meaningfulness of three-dimensional (3D) results by themselves, it is crucial in the multiscale model, since it
is the driving mechanism of pressure-wave propagation. Unfortunately, 3D simulations in compliant domains still
demand computational costs significantly higher than in the rigid case. Appropriate matching conditions between
the two models have been devised to concentrate the effects of the compliance at the interfaces and to obtain reliable
results still solving a 3D problem on rigid vessels.

Keywords Circle of Willis · Domain splitting · Geometrical multiscale modeling · Matching conditions

1 Introduction

The complexity of the vascular system necessitates the set-up of convenient mathematical and numerical models
surpassing the usual models in fluid dynamics. Basically, computational hemodynamics relies on three classes of
models, featuring a different level of detail in the space dependence.
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320 T. Passerini et al.

Fully three-dimensional (3D) models are based on the incompressible Navier–Stokes equations possibly cou-
pled to appropriate models that describe the blood viscosity and the mechanical deformation of the vascular tissue.
These models are well suited for investigating the effects of the geometry on the blood flow and the possible physio–
pathological impact of hemodynamics. Unfortunately, the high computational costs restrict their use to contiguous
vascular districts only on a space scale of a few centimeters or fraction of a meter at the most (see, e.g., [1]).

By exploiting the cylindrical geometry of vessels, it is possible to resort to one-dimensional models (1D), by
reducing the space dependence to the vessel’s axial coordinate only. These models are basically given by the
well-known Euler equations and provide an optimal tool for the analysis of wave-propagation phenomena in the
vascular system. They are convenient when the interest is in obtaining the pressure dynamics in a large part of the
vascular tree at a reasonable computational cost (see [3,4] and [5, Chap. 10]). However, the space dependence still
retained in these models inhibits their use for the whole vascular system. In fact, it would be unfeasible to follow
the geometrical details of the whole capillary network.

A compartmental representation of the vascular system leads to a further simplification in the mathematical
modeling, based on the analogy between hydraulic networks and electrical circuits. The fundamental ingredients
of these lumped-parameter (0D) models are the Kirchhoff laws, which lead to systems of differential–algebraic
equations. These models can provide a representation of a large part or even the whole circulatory system, since
they get rid of the explicit space dependence. They can include the presence of the heart, the venous system, and
self-regulating and metabolic dynamics in a simple way and at a low computational cost [3].

All these models have peculiar mathematical characteristics. They are able to capture different aspects of circu-
latory systems that, however, are coupled together in reality. In fact, the intrinsic robustness of the vascular system,
still able to provide blood to districts affected by a vascular occlusion, thanks to the development of compensatory
dynamics, strongly relies upon this coupling of different space scales. Feedback mechanisms essential to the correct
functioning of the vascular system work over the space scale of the entire network, even if they are activated by
local phenomena such as an occlusion or the local demand of more oxygen by an organ. This is particularly evident
in one of the most important parts of the vascular tree, the cerebral vasculature. Circulation in the head features
a strongly coupled anastomotic system, called the circle of Willis, which ensures an adequate blood supply to the
brain, even when one of the incoming arteries is occluded or missing (see, e.g., [6–8]).

To devise numerical models able to cope with coupled dynamics ranging on different space scales, a geometrical
multiscale approach has been proposed in [4], see Fig. 1. According to this approach, the three different classes
of models are mathematically coupled in a unique numerical model. Despite the intuitiveness of this approach,
many difficulties arise when trying to combine numerically mathematical models that are self-consistent but not
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Fig. 1 Left: Anatomical representation of the cerebral vasculature, including the circle of Willis (after Balboni [2]). Right: Multiscale
representation of the cerebral vasculature: a 3D representation of one of the carotid arteries is embedded in a 1D network of Euler
problems
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Fig. 2 A simple multiscale
(3D/1D) model of a
cylindrical pipe

1D Model

3D Model

Γ

designed to work together; see, e.g., [8,9]. Some of these difficulties have been extensively discussed recently in
[5, Chap. 11].

A practical difficulty arises when some features that could be neglected at a certain scale become essential in the
coupled model, inducing a significant increase of the overall computational cost. This is the case of the compliance
of vessels. In 3D Navier–Stokes stand-alone models compliance is quite often not relevant for bioengineering pur-
poses. However, it is a driving mechanism of pressure-wave propagation along the vascular tree. Therefore, when
considering 3D/1D geometrical multiscale models, in principle compliance should not be disregarded in either
models. The computational cost of a compliant 3D simulation is, however, by far (in general, more than two times)
higher than for the rigid case. The coupling between 1D and 3D compliant models has been investigated recently
in [10].

A naive coupling of the intrinsically compliant 1D model with a 3D rigid one, forcing for instance the continuity
of pressure and flow rate at the interface, is problematic. The main reason is that the different mathematical modeling
of the wall in the two subdomains causes spurious wave reflections at the interface between the models, strongly
affecting the numerical results. We overcome these difficulties by resorting to appropriate matching conditions that
mimic the presence of the compliance, by concentrating it at the interface between the models. We introduce these
conditions in Sect. 2. In Sect. 3 we present a multiscale model of the circle of Willis based on a 1D network whose
results are in good agreement with results taken from the literature (Sect. 3.1). We illustrate multiscale simulations
where a 3D model of the left carotid bifurcation is coupled with the 1D model of the circle of Willis. Thanks to
the adoption of matching conditions including the compliance, it is possible to simulate the overall dynamics still
solving a 3D rigid model.

The fine-tuning of the parameters associated with the proposed interface conditions is briefly addressed in the
Conclusions.

2 Matching conditions in 3D rigid/1D multiscale models

To fix the ideas, let us refer to the simple model represented in Fig. 2. We assume that a cylindrical pipe has been
split at section � into two halves. The left one is described in terms of the 1D Euler equations

∂A

∂t
+ ∂Q

∂x
= 0,

∂Q

∂t
+ ∂

∂x

(
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Q2

A

)
+ A

ρ

(
∂P
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)
+ K R

Q

A
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Here A = A(t, x) represents the area of the vascular section at the abscissa x along the vessel axis and at time t ;
Q = Q(t, x) is the corresponding flow rate, P = P(t, x) is the pressure, ρ the blood density, assumed to be
constant, α the so-called momentum correction coefficient and, under the assumption of a parabolic velocity profile,
K R = 8πµ is a coefficient associated with the blood viscosity µ; see, e.g., [3] and [5, Chap. 10] for more details.
Following classical arguments for 1D models, we assume that the pressure and the radius of the vessel feature a
linear dependence, or equivalently

P = �(A) = Pext +
√
πh0 E

(1 − ν2)A0

(√
A − √

A0

)
, (2)
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where E is the Young modulus of the wall, h0 is the wall thickness and ν the Poisson ratio. The flow in the right-hand
side of the pipe is described by the incompressible Navier–Stokes equations

ρ
∂u
∂t

+ ρu · ∇u − ∇ · (µ∇u)+ ∇ p = 0, ∇ · u = 0, (3)

where u = u(x, y, z, t) is the velocity field, p = p(x, y, z, t) the pressure.
Coupling the two models requires appropriate matching conditions. In the case of a rigid 3D model, it is reasonable

to prescribe the continuity of pressure and flow rate

P1D = 1

|�|
∫
�

p3Ddγ, Q1D = −ρ
∫
�

u3D · ndγ, (4)

where we have added the indexes 1D and 3D for the sake of clarity and denoted by |�| the area of the interface �.
The negative sign in the second equation of (4) stems from the fact that Q1D and u3D · n are pointing outwards
from the 1D and 3D domains, respectively. In the sequel, for ease of notation, we set Q3D = ρ

∫
�

u3D · ndγ and
P3D = 1/|�| ∫

�
p3Ddγ .

Other conditions can be considered as well, e.g. prescribing the continuity of the total pressure, of the normal
stresses or of the characteristic variables; see [5, Chap. 11].

When solving multiscale problems numerically, it is natural to split the scheme into an iterative sequence of
dimensionally homogeneous problems, which we indicate as 1D and 3D, for instance by means of the follow-
ing algorithm. We assume that standard (Dirichlet or Neumann) conditions are prescribed at the boundaries of
the overall 1D/3D model. Moreover, we carry out an appropriate space and time discretisation of the problems.
In particular, superscripts n and n + 1 refer to the approximation of the solution at time steps tn and tn+1, respec-
tively. Index k will refer to the inner iterations performed at a fixed time step, for the fulfillment of the matching
conditions. For n = 0, 1, . . . we perform the following steps.

(1) Initialization. Set k = 0, un+1
3D,0 = un

3D, pn+1
3D,0 = pn

3D and Pn+1
1D,0 = Pn

1D , A1D,0 = ψ−1(Pn+1
1D,0),

Qn+1
1D,0 = Qn

1D .
(2) Loop on k

(2.1) Solve the 1D model with the boundary condition on � given by

Pn+1
1D,k+1 = χ Pn+1

3D,k + (1 − χ)Pn+1
1D,k, (5)

where χ is a relaxation parameter to be set for improving the convergence rate. Solving the 1D model,
pressure conditions are recast in terms of area, thanks to the wall law An+1

1D,k+1 = ψ−1(Pn+1
1D,k+1).

(2.2) Solve the 3D problem with the boundary conditions on �

Q3D,k+1 = −Qn+1
1D,k+1 (6)

Set k = k + 1.

(3) Test. Different convergence tests can be pursued. A possibility is to check the continuity at the interface,
namely terminate the iterations when |Pn+1

1D,k+1 − Pn+1
3D,k+1| ≤ ε being ε a user-defined tolerance. Another

possibility is to check the increments of the interface variables in subsequents iterations.

Swapping the role of the matching conditions in the set-up of the boundary conditions for the iterative scheme,
(5), (6) can be replaced by

Qn+1
1D,k+1 = −χQn+1

3D,k + (1 − χ)Qn+1
1D,k, Pn+1

3D,k+1 = Pn+1
1D,k+1. (7)

The different space dependence of 1D and 3D models leads to unmatched or defective conditions (step 2 of the
loop) and in particular (6) (or the second condition (7)) do not prescribe sufficient conditions for the closure of
the Navier–Stokes problem. The latter needs to be solved in the framework of defective boundary problems, the
data available at the boundary being insufficient to guarantee the uniqueness of the solution. This topic has been
discussed in [5, Chap. 11], where different mathematically sound techniques for the solution of defective problems
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Fig. 3 Representation of a multiscale model with a 0D element representing the compliance of the 3D model at the interface

are presented. The specific method for solving the 3D problem affects the accuracy of the Navier–Stokes solution
and is not relevant for the purpose of the present paper, so we do not dwell upon it. Any reasonable technique can
be used in the context of our multiscale modeling.

The iterative approach given by the previous three steps suffers from numerical problems induced by the dif-
ferent description of the wall mechanics in the two halves of the pipe, which produces spurious reflections at the
interface and possible numerical instabilities. One could avoid this kind of problems by resorting to a compliant 3D
model. As we have pointed out, this increases the computational costs strongly. More precisely, implicit coupled
fluid–structure iterative schemes at each time step require to solve the Navier–Stokes and the structural problems
several times. In explicit coupled fluid–structure iterative schemes, stability concerns typically require to take small
time steps.

In the next subsection, we present a different strategy based on the set-up of an appropriate set of interface
conditions.

2.1 Matching conditions including compliance

2.1.1 A simple case

Suppose we have a simplified representation of the compliance of the 3D vessel in the multiscale model by gathering
its effect at the interface using a special lumped-parameter model. Referring for instance to Fig. 3, we introduce
a RCL network at the interface with the role of representing the effects of the compliance of the artery in the 3D
model. In this way, we still use a 3D rigid model which, however, behaves like a compliant one with respect to the
system dynamics. By denoting with P the pressure associated with the capacitance C , we can derive the following
set of equations (see, e.g., [5, Chap. 10] and [11]):

P = P1D − R1 Q1D, P = P3D − L
dQ3D

dt
− R2 Q3D, C

dP

dt
= Q1D + Q3D. (8)

Taking the derivative of the first equation and using the third, we can eliminate P and finally obtain the new
conditions in the iterative scheme, by replacing (5) and (6) with

P1D,k+1 = χ

(
P3D,k − L1

dQ3D,k

dt
− R2 Q3D,k + R1C1

dP3D,k

dt

−R1C L
d2 Q3D,k

dt2 − R1C R2
dQ3D,k

dt
− R1 Q3D,k

)
+ (1 − χ)P1D,k (9)

Q3D,k+1 = −Q1D,k+1 + C
dP1D,k+1

dt
− R1C

dQ1D,k+1

dt
.

These conditions (hereafter denoted by LP (Lumped Parameter) conditions) involve time derivatives of the
matching quantities. They have been discretized with finite differences of the same accuracy of the time-advancing
scheme used for the time discretisation of the Navier–Stokes and Euler equations. More precisely, in this work we
resorted to the first-order implicit finite differences.

123



324 T. Passerini et al.

Remark As expected, for C = 0, R1 = R2 = 0 and L = 0 we recover the coupling given by conditions (5), (6).
This corresponds physically to the case of a rigid portion of artery in a network of compliant vessels, as it is the
case of a stented or prosthetic segment; see [12].

2.1.2 Parameters estimation

The interface LP model of Fig. 3 provides a physical representation of our matching conditions. A major issue in
this approach is the tuning of the paramaters featuring the LP model. In particular, we started from a classical RCL
network, advocated for representing the capillary circulation; see [13–15].

We remind that, following classical arguments for the derivation of lumped-parameter models (see, e.g.,
[5, Chap. 10], based on a proper average of the Navier–Stokes equations) for a cylindrical vessel with length
l, area A0, with a linear elastic wall with thickness h0 and Young modulus E , the compliance may be estimated to
be C ∝ A3/2

0 l/(Eh0). Physiological values of this parameter are of the order of 10−5 cm5/dyn. In our computation
(l = 5 cm and A0 = π cm2) we set C = 5.8910−5 cm5/dyn. The other parameters have been properly adjusted
in order to reduce spurious effects at the 1D/3D interfaces. More precisely, resistance R1 has been introduced in
[15] and, following the proposal of that paper, it is dynamically selected so that an incoming wave from the 1D
model is propagated without any reflection. For R2 and L , in this paper we have adopted an empirical trial-and-error
approach, so that after some numerical experiments we put R2 = 1 dyn s cm−2 and L = 0.01 g cm−4.

For more complex models, these parameters should be adapted accordingly. A mathematically sound approach
for the fine-tuning of the parameters is beyond the scope of the paper (see the Conclusion section). Here, we have
adopted a trial-and-error approach.

The impact of the LP conditions is illustrated in Figs. 4 and 5. More precisely, in Fig. 4 we show results obtained
for the model of Fig. 3 when a sinusoidal waveform for the flow rate is prescribed at the inlet. We compare the time
history of the flow rate and area (as a function of the pressure) at the interface, denoted by Q1D and A(P1D) in
Fig. 3, obtained with a standard multiscale 1D/3D model, using the proposed approach and finally those obtained
with a complete 1D model. In Fig. 5 we present similar comparisons for the case when a step waveform is prescribed
at the inlet of the domain. The impact of interface conditions is evident. In the case based on classical matching, the
solution is dramatically affected by reflections induced by the different description of the wall mechanics in the 1D
and 3D model. These reflections change completely the profile of the solution. Observe that the complete reflection
of the flow rate of Fig. 5 can be justified by a linear analysis of the reflection coefficient considered e.g. in [2]. For a
rigid downstream pipe, this coefficient corresponds to total reflection. On the contrary, matching conditions based
on the RCL model are able to obtain a behavior similar to that of the complete 1D model, even if we are using
a rigid 3D model. The same conclusions hold for the area: the RCL-based conditions allow us to find a solution
significantly close to that of the complete 1D model. As pointed out, a proper tuning of the parameters is crucial to
find the best RCL model.

2.2 A 1D–3D–1D coupling

Let us now consider the case represented in Fig. 6, where we show a sequence of 1D–3D–1D models with appro-
priate LP conditions. From a numerical point of view on the left interface we still resort to the iterative scheme
with conditions (9). On the right interface, we adopt a similar iterative strategy where we prescribe a pressure con-
dition to the 3D problem and flow rate conditions to the 1D Euler system downstream. More precisely, equations
corresponding to the downstream interface read⎧⎪⎨
⎪⎩

P3D − R3 Q3D = P1D − L2
dQ1D

dt
− R4 Q1D

C2
dP3D

dt
− R3C2

dQ3D

dt
= Q1D + Q3D
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Fig. 4 Comparison of dynamics of flow rate (left) and area (right) at x = 5 cm of a compliant pipe simulated with a fully 1D model, a
multiscale 1D/3D model with direct coupling and with the matching conditions obtained by the lumped-parameter models. The input
waveform of the flow rate at the tube inlet is a sine with amplitude 0.1. (time in [s], volumetric flow rate in [cm3/s], area in [cm2])
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Fig. 5 Comparison of dynamics of flow rate (left) and area (right) at x = 5 cm of a compliant pipe simulated with a fully 1D model, a
multiscale 1D/3D model with direct coupling and with the matching conditions obtained by the lumped-parameter models. The input
waveform of the flow rate at the tube inlet is a step function with amplitude 0.1. (time in [s], volumetric flow rate in [cm3/s], area in
[cm2])

Fig. 6 Representation of a multiscale model with two-buffer 0D elements at the interface

Consequently, the coupling conditions used in the iterative scheme are⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Q1D,k+1 = χ

(
−Q3D,k + C2

dP3D,k

dt
− R3C2

dQ3D,k

dt

)
+ (1 − χ)Q1D,k

P3D,k+1 = P1D,k+1 − L2
dQ1D,k+1

dt
− R4 Q1D,k+1 + R3C2

dP1D,k+1

dt

−R3C2L2
d2 Q1D,k+1

dt2 − R3C2 R4
dQ1D,k+1

dt
− R3 Q1D,k+1

(10)

Numerical results are reported in Fig. 7. Again, we illustrate the comparison of the solutions obtained with a
1D model, and the multiscale models corresponding to Fig. 6, where all the lumped parameters are null (classical
conditions) and when they are activated. The inlet waveform is sinusoidal.

In the first picture we present the flow rate at the first interface (denominated Q1D,l in Fig. 6), in the second the
flow rate −Q1D,r at the second interface and finally the flow rate Q1D,end at the outlet of the right pipe. Again, when
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Fig. 7 Comparison of flow rates computed by a 1D model (dash-dot line), a multiscale 1D/3D/1D model with classical matching
conditions (dashed line) and with lumped-parameter matching conditions (solid line) in correspondence of the first interface (top), the
second (bottom, left) and the outlet of the domain (bottom, right). (time in [s], volumetric flow rate in [cm3/s])

classical matching conditions are used (corresponding to null values of the parameters) the superposition of the
wave components induced by reflections triggered by the different wall models at the inlet is evident. This changes
the shape of the propagating wave and affects both the amplitude and the phase at the inlet and at the outlet of the
3D model. Amplitude dissipation in the forward component of the wave is partially compensated by the superim-
position of the spurious reflections. In the case of LP conditions, the shape of the wave is only partially affected.
Dispersion errors are remarkably small, whilst dissipation effects are present. More precisely, the dispersion error,
evaluated as the difference in the occurrence of the peaks in the 1D and the multiscale LP models, are 20%, 6% and
5% in the three pictures of Fig. 7, respectively, while dissipation, evaluated as the difference of the peaks, are 25%,
32% and 32%, respectively. The impact of finite-difference schemes in the numerical implementation of matching
conditions is probably the main factor responsible for these effects. A more accurate analysis of this aspect will be
carried out elsewhere. In any case matching conditions guarantee a significant reduction of spurious reflections.

3 Multiscale model of the circle of Willis

The circle of Willis is the main collateral pathway of the cerebral circulation. It is essentially given by a polygonal
ring at the basis of the brain . The polygon (see Fig. 8) is made of the right and left Posterior Cerebral Arteries (rPCA
and lPCA), the right and left Posterior Communicating Arteries (rPCoA and lPCoA), the right and left Anterior
Cerebral Arteries (rACA and lACA) and the Anterior Communicating Artery (ACoA). Blood is supplied by the
two Internal Carotid Arteries (rICA and lICA) and the two Vertebral Arteries (rVA and lVA). The latter join into
the Basilar Artery (BA), from which the two PCAs depart, delivering blood in the posterior region of the brain. The
two ACAs depart from the ICAs and deliver blood to the anterior part of the brain. This complex structure has two
advantages. On the one hand, it supplies blood to the brain, even when one or more vessels are occluded or missing.
On the other hand, it protects the brain from excessive supply of blood, distributing it uniformly.

It is well known that in fact in almost 50% of the population one of the branches of the circle is absent or partially
developed [16]. A correct knowledge of the functioning of the circle of Willis is relevant in clinical practice for many
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Fig. 8 1D model of the circle of Willis: description of the circle (left) and a bifurcation (right)

intracranial or extracranial procedures like endoarterectomy, carotid stenting or the compression carotid test; see,
e.g., [17]. Several mathematical studies have been carried out for devising quantitative analysis of this district. After
the first studies based on hydraulic or electric analog models [18–21], we mention the investigations carried out in
[22]. Most of the research is based on modeling the circle of Willis as a set of 1D Euler problems (1) representing
each branch of the circle, with an appropriate modeling of the bifurcations. We further mention [6,15,23–27]. More
recently, metabolic models have been added to simulate cerebral auto-regulation, which is a feedback mechanism
driving an appropriate blood supply into the circle on the basis of oxygen demand by the brain [15]. A complete
3D image based numerical model of the circle of Willis has been presented in [1]. It requires medical data that
are currently beyond the usual availability in common practice, and is computationally intensive. Hereafter, we
propose a multiscale model where the 3D simulation is used only in the region of interest (the left ICA in our case)
and the remainder of the network is modeled by a 1D network. A similar multiscale model has been investigated
in [10], where the 3D model includes compliance for avoiding spurious reflections induced by a rigid treatment of
the 3D geometry in the multiscale model. Here we discuss results obtained with a rigid model together with the
lumped-compliance matching conditions just described.

3.1 The 1D network

The proposed model is based on the set-up presented by Alastruey et al. [15] for the description of the cerebral
circulation. The circle of Willis is immersed in a larger network of 1D models describing the main arteries bringing
blood to the brain, and the inflow boundary condition for the whole network is provided by the heart.

In our model, the vascular network is represented by an oriented graph. The edges of the graph correspond to
the vessels, while the nodes are the junctions. Each edge (see Fig. 8 on the left) has been described by system (1)
where appropriate initial conditions have been assumed. The junctions have been modeled by prescribing balance
equations for the mass and the total pressure Pt = P + 1/2ρU 2 (see [12,28]). For the sake of concreteness, if we
refer to Fig. 8 on the right, we will prescribe

Q1 + Q2 + Q3 = 0,
P1,t = P2,t + ϕ(U, α12)

P1,t = P3,t + ϕ(U, α13)
,

where functions ϕ possibly include some dissipation effects depending on the bifurcation angles α12 and α13. We
assume ϕ = 0, since the numerical solution has been proved to be weakly affected by this choice; see [12].

The inlet condition is a periodic function of time representing the cardiac input, with period T = 1 s [15]:

Q(t) =
{

485 · sin
( 2π

T t
)

0 ≤ t < τs

0 τs ≤ t < T

with τs = 0.3 s.
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Table 1 Flow distribution
in Anterior Cerebral
Arteries (ACA), Middle
Cerebral Arteries (MCA)
and Posterior Cerebral
Arteries (PCA) computed in
different models proposed
in the literature and in the
present one

Model ACA (%) MCA (%) PCA (%)

Hillen [23] 22.2 45.0 32.8

Hillen [24] 22.1 44.8 33.1

Lyden [25] 21.2 53.6 25.2

Macchi [26] 23.2 53.4 42.4

Viedma [6] 24.5 49.9 27.8

Ferrandez [27] 22.3 49.9 34.9

Our model 20.8 44.9 34.3
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Fig. 9 Comparison of the results obtained with a fully 1D model (solid line) and the 3D rigid with RCL conditions at the inlet of
Common Carotid Artery (dashed line). Left: flow rate, Right: area. (time in [s], volumetric flow rate in [cm3/s], area in [cm2])

At the outlet of the network we prescribe boundary conditions suitable for the representation of the capillary
network. More precisely, we adopt a three-elements Windkessel model for the peripheral circulation as proposed
in [14,15].

To check the reliability of our code we have reported in Table 1 the distribution of fluxes obtained by models of
the circle of Willis available in the literature and our results. The agreement is good.

3.2 The 3D carotid model and the multiscale coupling

The multiscale model is depicted in Fig. 1, on the right. The geometry of the Left Internal Carotid geometry is based
on the realistic model by Liepsch; see [29]. The Navier–Stokes equations in the 3D model have been solved with the
code LifeV—see www.lifev.org—based on a P1P1 finite-element solver stabilized by means of an interior penalty
approach. At the interfaces between the 3D and 1D models we prescribe conditions (9) at the upstream interface
and conditions (10) at the downstream interfaces.

In Figs. 9 and 10, we present the results, in comparison with the ones of a fully 1D model. Results underline
that the RCL-based conditions can actually obtain good solutions, in particular at the inlet. At the outlets of the
carotid arteries the solution is strongly dissipated in the flow rate, while dispersion error and the area solution are in
remarkably good agreement. Impact of the time discretisation of the matching conditions and the selection of the
parameters on the dissipation error is under investigation.

4 Conclusions

We have proposed to introduce special matching conditions in a geometrical multiscale model of the circulatory
system. In particular, we have considered the coupling of 1D and 3D models. The former intrinsically account for
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Fig. 10 Comparison of the results obtained with the fully 1D model (solid line) and the 3D rigid with RCL conditions in the branches
(dashed line). Top: Left: flow rate in the Internal Carotid Artery (ICA), Right: area in the ICA. Bottom: Left: flow rate in the External
Carotid Artery (ECA), Right: area in the ECA. (time in [s], volumetric flow rate in [cm3/s], area in [cm2])

vessel compliance, while the inclusion of wall mechanics in the latter induces a remarkable increment of the com-
putational costs. On the other hand, even if the local effects of wall dynamics in the 3D stand-alone model are not
significant, deformability is the driving mechanism of pressure-wave propagation dynamics over the arterial tree, so
that it cannot be neglected in the multiscale framework. Matching conditions proposed here can be represented as a
lumped-parameter model gathering the compliance at the interfaces between 1D (compliant) and 3D (rigid) models.
In this way, deformability is included in the entire multiscale model, without resorting to expensive solutions of 3D
fluid–structure interaction models.

For simple multiscale models, where the parameter quantification for the matching conditions is straightfor-
wardly suggested by the mathematical derivation of the model, numerical results are really promising, showing
that the multiscale 3D/0D/1D model can both capture the correct wave propagation (in comparison with a fully
1D model) and compute the local 3D flow. In more complex situations, like the circle of Willis in the cerebral
vasculature, when a direct physiological quantification of the parameters is missing, results are only partially good.
More precisely, at the inlet of the 3D model results still compare correctly with a fully 1D model, while downstream
with respect to the 3D model dissipation effects in the flow rate are dominant.

A mathematically sound fine-tuning of the parameter is required. This goal can be pursued by a systematic
sensitivity analysis or by extensive comparisons with stand-alone fully 3D models; see, e.g., [14,30]. This subject
will be investigated in forthcoming papers together with a validation of this approach in more complex networks.

We finally point out that this approach can be extended to hydraulic networks featuring compliant pipes, beyond
the specific medical applications considered here.
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